In December 14, 2001, Ayatollah Ali Akbar Hashemi Rafsanjani, chairman of Iran’s powerful Expediency Council, mounted the podium at the University of Tehran to deliver the government’s official weekly sermon. Rafsanjani took the usual anti-American and anti-Israeli rhetoric one step farther than ever before. Speaking to the assembled crowd of students, government officials, and the media, he declared, "If one day, this Islamic World is also equipped with weapons like those that Israel possesses now, then the imperialists’ strategy will reach a standstill because the use of even one nuclear bomb inside Israel will destroy everything."1 In the doctrine of the Islamic Republic, nuclear weapons would not be just for their deterrent effect, but rather to pursue ideological goals.

With the United States gearing up to do possible battle with Iraq, there exists growing international attention to the development of weapons of mass destruction [WMD] in neighboring Iraq. However, while the spotlight is on Iraq, the Iranian government has accelerated its development of a range of nuclear, chemical, and biological weaponry, as well as an ambitious ballistic missile program.

The roots of the Iran's pursuit of WMD lie in the years of the Iran-Iraq War, though the Shah had previously laid the groundwork for an indigenous Iranian nuclear capability during the 1970s. However, while Iranian WMD development was underway in the 1980s, Iran’s WMD programs, as well as the Islamic Republic’s missile development, have accelerated in recent years and, in particular, since Iranian president Muhammad Khatami launched his call for a "dialogue of civilizations." Many journalists, academics, and policymakers assume that Iran’s WMD programs are a project of hardline forces, like the Islamic Revolutionary Guard Corps, implicitly absolving the rest of the Iranian government. However, Rafsanjani was himself once labeled a moderate by prominent newspapers, like The Washington Post, and even by State Department spokesmen. Khatami, too, has made clear he endorses Iran’s weapons program. Following the test of the Shihab-3 missile, capable of striking Israel, Turkey, and India, Khatami declared, "Iran will not seek permission from anyone for strengthening its defense capability."2

Iran’s nuclear program

In a December 3, 2001, New Yorker article, investigative reporter Seymour Hersh alleged that the Islamic Republic was on the brink of developing nuclear weapons.3 Rafsanjani’s nuclear threat two weeks later simply underlined the risk of ignoring Tehran’s nuclear ambitions. However, Rafsanjani was not the first high-level Iranian official to advocate developing an Iranian nuclear bomb, though he was the first official to so publicly advocate using atomic weapons. Both former defense minister Akbar Torkan and former deputy president and leading reformist Ataollah Mohajerani, whom Khatami subsequently appointed to be his Minister of Islamic Guidance, have called for Iran to develop nuclear weapons.4

Iran’s nuclear weapons program centers around the nuclear reactor complex at Bushehr, the first reactor of which is
nearing completion. On March 7, 2002, Viktor Kozlov, director-general of Atomstroyeksport, the Russian nuclear reactor construction firm building the Bushehr plant, reported that his company had already delivered to Iran the first reactor unit’s casing. Atomstroyeksport will begin construction of the reactor unit in April, and the Bushehr reactor should be online by December 2003.5 Kozlov’s comments come nearly a year to the day after Iranian President Muhammad Khatami visited Moscow to sign a $7 billion deal to purchase advanced arms and weaponry from Russia.6

The completion of the Bushehr nuclear reactor will complete a three-decade odyssey to join the nuclear club. In 1974, Shah Muhammad Reza Pahlavi established the Atomic Energy Organization of Iran [AEOI] and called for the construction of 23 nuclear plants within two decades.7 The AEOI contracted with a West German firm to build two reactors at Bushehr, a port city along the Persian Gulf. The reactors were half-completed at the time of the Shah’s fall, and the German firms refused to cooperate with Ayatollah Khomeini’s regime.

While Iran had signed the nuclear non-proliferation treaty in 1970, the Shah nevertheless also laid the groundwork for a clandestine weapons program. In 1976, the Tehran Nuclear Research Center [TNRC] agreed to underwrite an American scientist’s research into a specialized laser process to enrich uranium to weapons-grade material.8 The TNRC also allowed its scientists to experiment with reprocessing techniques.9 But, as with the Bushehr reactors, the Islamic Revolution cut short the TNRC’s activities.

Almost immediately after the foundation of the Islamic Republic, the new regime sought to renew Iran’s bomb program. Fereidun Fesharaki, an Iranian immigrant and currently director of the energy program at Hawaii’s East-West Center, recalled being summoned to Ayatollah Muhammad Beheshti’s office in May 1979. Fesharaki who served as an energy advisor under the Shah’s prime minister, feared he would be interrogated and executed. Beheshti, perhaps Khomeini’s top advisor at the time, instead told him, “It is your duty to build this bomb for the Islamic Republican Party.”10 Telling Beheshti that he needed to build a research team from Iranian exiles abroad, Fesharaki left Iran and did not return. By the mid-1980s, though, the Islamic Republic’s leadership had found other ways to renew their drive for civilian nuclear capability and, in 1987, initiated a full-fledged drive to develop nuclear weapons.11

The Bushehr reactor

Several countries have intentionally or or inadvertently helped Tehran toward this goal. In a 1995 deal worth $800 million, Russia agreed to sell Iran one VVER-1000 nuclear reactor, 2,000 tons of uranium, and provide training for up to twenty AEIO employees.12 Russia also agreed in principle to sell Iran an additional VVER-1000 and two VVER-400 reactors.13 However, after furious American lobbying, Moscow agreed not to sell the Iranians a centrifuge enrichment plant.14 Beijing, though, helped Iran fill the gap and agreed to assist Iran’s efforts to enrich nuclear fuel.15 Tehran has also repeatedly attempted to purchase enriched uranium from cash-strapped former Soviet republics.16 While the Bushehr light-water reactor is subject to IAEA inspection and likely will not produce weapons-grade material, real danger exists that the Bushehr plant can provide cover for other Russian-Iranian nuclear exchanges.17 Brenda Shaffer, director of Harvard’s Caspian Studies program and an expert on Russia-Iran relations, warned specifically that Iran could order materials for the Bushehr plant which could then be incorporated in graphite or heavy-water reactors capable of weapons-grade plutonium production. Likewise, Tehran could apply imported Russian laser technology to the production of highly-enriched uranium.18

Beyond Bushehr: Iran’s other nuclear facilities

Bushehr may be the highest-profile nuclear site in Iran, but it likely not the only one. According to Hersh, "Iran’s most important nuclear production facilities are not at Bushehr, which is open to international inspection by the Vienna-based International Atomic Energy Agency, but scattered throughout the country, at clandestine sites, under
military control."19 Specifically, Hersh singled out the Sharif University of Technology in Tehran, which he alleged serves as a procurement front and research center for a nuclear weapons program. However, numerous other facilities exist:

- **Bonab:** Near Tabriz, Bonab [38°25'N, 45°54'E] is the site of the Bonab Atomic Energy Research Center. In 1997, Hans Blix, then IAEA director general, toured the Bonab facility. Scientists demonstrated research relating to nuclear isotopes in food preservation. While the IAEA declared on August 4, 1997, that there was no sign of clandestine nuclear activity at Bonab, Blix and the Iranian government had set the itinerary for the inspection trip prior to his arrival in Iran.21

- **Chalus:** Chalus [36°40'N, 51°25'], in the Alburz mountains 20 kilometers south of the town of the same name, is reportedly the site of an underground nuclear weapons development facility built into the mountain.22 Iranian authorities have told local residents that the mysterious doors leading into the mountain are for an electrical generation plant staffed by Canadians.23

- **Darkhovin:** South of Ahvaz lies the Darkhovin [30°45'N, 48°24'E] facility, controlled by the Islamic Revolutionary Guards Corps. In 1993, China agreed to sell two 300-megawatt Qinshan reactors for a project named "Istiqlal" (not to be confused with the town of the same name). However, after Iran defaulted on payment, China cancelled reactor construction.24

- **Fasa:** The Rudan Nuclear Research Center in Fasa [28°56'N, 53°39'E] near Shiraz, is reportedly the location of uranium yellowcake processing into uranium hexafluoride gas.25

- **Isfahan:** Isfahan is the center of Iran's nuclear weapons program. The Nuclear Technology Research Center at the University of Isfahan [32°35'N, 51°38'E] reportedly employs 3,000 scientists. Also in Isfahan is a 27-kilowatt Chinese-supplied Miniaturized Neutron Source Reactor. In October 1997, China agreed not to expand further its nuclear cooperation with Iran, but reported that it would complete the reactor in Isfahan, as well as a zirconium production plant.26 Zirconium, which is not regulated by the IAEA, is used to produce cladding for nuclear fuel. In 2000, the CIA reported that China had kept its word to limit nuclear assistance to completion of the two Isfahan plants.27

- **Karaj:** Karaj [35°50'N, 51°00'E] is the site of the Nuclear Research Center for Agriculture and Medicine. The Center includes a radiochemistry lab, dosimeter lab, a Chinese calutron, and a Belgian cyclotron.28 On June 6, 1999, the Karaj facility began a three-week "regional training course" on "non-destructive [nuclear] testing," attended by officials of the IAEA, and geared toward Iranians and foreigners in the oil, petrochemical, air, and shipping industries.29

- **Lavizan:** Just south of Tehran, Lavizan [35°46'N, 51°30'E] was alleged in a 1998 Jerusalem Post article to be the storage site of four nuclear warheads allegedly acquired from the former Soviet Union.30 Regardless of the veracity of such claims, Lavizan is the site of the Aerospace Industries Organization that works to design Iran's missiles.31

- **Mu'allim Kalayeh:** The Mu'allim Kalayeh facility [36°26'N, 50°30'E] is located in the mountains near Qazvin. While some allege the facility to house uranium enrichment gas centrifuges, a 1995 IAEA inspection found Mu'allim Kalayeh to be a recreation facility for nuclear industry staff.32
Neka: Unconfirmed reports point to Neka [36°39'N, 53°17'E], near the Caspian Sea, as a possible site of an underground nuclear reactor facility. Because the Iraqi-backed Mujahadin al-Khalq and its various front groups often fabricate information, such unconfirmed reports must be taken skeptically. Neka is the site of significant oil industry development. In March 2001, Iran and a Swedish company signed a $226 million contract to build a semi-submersible drilling rig offshore.

Saghand: In the central Iranian province of Yazd, Saghand [32°32'N, 55°15'E] is the proposed site of uranium mines to support Iran's weapons program. The Saghand uranium deposits cover between 100-150 square kilometers, and contain perhaps 5,000 tons of uranium oxide with a U-235 content between 0.08% and 1.00%. According to a February 2002 report in the Sunday Times, Israel takes so seriously Iranian activity at Tabas, near Saghand, that Israeli pilots have been training in Turkey for possible strikes against Iran.

Tabas: Reports of a nuclear reactor at Tabas [32°48'N, 60°13'E] remain unconfirmed, though Russia and Iran signed an agreement to develop a thermal power plant at the site in March 2001.

Tehran: The Tehran suburbs are home to the headquarters of Iran's civilian and military nuclear programs. The Tehran Nuclear Research Center [TNRC] is located in the suburb of Amirabad [35°33'N, 51°20'E] and contains a five-megawatt research reactor provided by the United States in 1968. The TNRC also contains a uranium yellowcake production facility. Tehran is also home to the AEOI's Center for Theoretical Physics and Mathematics, which conducts research and development relating to nuclear physics and plasma physics.

Yazd: The Nuclear Research Department at the University of Yazd [31°55'N, 54°20'E] focuses on geological research in the Saghand uranium deposit.

How close is Iran to the bomb?

Estimates vary as to how close Iran is to developing a nuclear weapon. Availability of bomb-grade nuclear material is the limiting factor. However, the Islamic Republic has repeatedly attempted to acquire plutonium or highly-enriched uranium. Since 1987, Iran has sought to purchase 20-30 megawatt research reactors from Argentina, India, China, and Russia. Not only do such reactors utilize highly-enriched uranium, but they also produce plutonium more cheaply than do simple nuclear power plants. Iran has also pursued, without result, the import of technologies to separate plutonium from spent fuel rods, to produce yellowcake, to manufacture reactor fuel, and to produce heavy water.

The Islamic Republic has had some success in its drive to acquire enrichment technology. The Iranian government and its various front companies have acquired from Switzerland, Germany, Russia, and China gas centrifuges and calutrons that can be used to enrich uranium, at least in small quantities. More recently, on June 8, 2000, the National Security Agency reported that Russia sent tritium gas to a nuclear research center in Tehran.

Even though much of the Islamic Republic’s procurement has been unsuccessful, Iran’s attempts to acquire weapons-grade material indicate that Tehran’s intentions are not peaceful. In prepared testimony on February 6, 2002, Director of Central Intelligence George Tenet declared that “Tehran may be able to indigenously produce enough fissile material for a nuclear weapon by late this decade.” If Iran succeeds in importing such material, production of an Iranian bomb could come much sooner. Tehran’s ambitions go beyond just the nuclear option, though. As Tenet observed, “Iran remains a serious concern because of its across-the-board pursuit of WMD and missile capabilities.”

While nuclear weapons in the hands of Iran’s hardline leadership would change the dynamics of the entire region, a
much greater immediate threat to Middle Eastern security and stability is Iran’s chemical and biological weapons programs. The Iranian leadership has mixed no words about their intentions to produce such weapons. In 1988, at a time when he was still considered a ‘moderate’ by Western journalists and governments, Rafsanjani argued that "chemical and biological weapons are poor man’s atomic bombs and can easily be produced. We should at least consider them for our defense."45

Iranian Chemical Weapons [CW]: An overview

According to military analyst Michael Eisenstadt, "Iran has the most active chemical warfare program in the developing world."46 Iran undertook a full-fledged effort to develop chemical weapons during the mid-1980s, after Iraq employed chemical weapons against Iranian forces. Beginning in 1984, Iran also used chemical weapons in its war against Iraq, at first employing captured Iraqi CW munitions, and then using Iranian-produced weaponry.47

Tehran began stockpiling chemical weapons in 1985. Reports in 1988 indicated that Iran had built a chemical munitions plant in Damghan [36Â°10'N, 54Â°20'E], 375 miles south of Mashhad.48 The Iranian government maintains other chemical weapons facilities in Isfahan, the Defense Industries Organization at Parchin [35Â°31'N, 51Â°46'E] (about 30 kilometers southwest of Tehran), and reportedly in a 'pesticide plant' in Qazvin [36Â°15'N, 50Â°01'E].49

Iran's stock of chemical agents is varied, comprising blister, blood, and choking agents, much of which the Islamic Revolutionary Guard Corps (IRGC) has weaponized into shells. In addition, ample evidence exists to indicate that Iran has, since 1994, actively sought to develop nerve agents.50 In 1995, the Bundesnachrichtendienst [BND], Germany's intelligence agency, reported that at least three Indian firms - Tata Consulting Engineering, Transpek and Rallis India - had helped Iran equip a factory capable of producing the nerve agents Sarin and Tabun.51

As of 1996, Iran was producing around 1,000 tons of agents, such as mustard gas and hydrogen cyanide, per year.52 However, while journalists continue to cite the 1,000-ton figure, proliferation of technology and indigenous improvements make it likely that Iran’s annual production of CW is far greater. For example, in March 2000, Iran contracted with the German company Salzgitter Anlagenbau to build a 1,450 kilograms per hour phosgene generator.53 While phosgene has industrial applications, weaponized it can cause severe lung damage leading to pneumonia and death.

Both China and Russia have actively assisted Iran’s CW program. On May 22, 1997, Secretary of State Madeline Albright announced sanctions on two Chinese factories suspected of supplying Iran with materials used to produce chemical weapons.54 While Iran denied the allegation, evidence indicates that it still seeks Chinese assistance in chemical weapons development.55 On October 5, 2000, John Lauder, director of the CIA Non-Proliferation Center, reported that "numerous Russian entities have been providing Iran with dual-use industrial chemicals, equipment, and chemical production technology that could be diverted to Tehran's offensive CW program."56

Despite having signed the Chemical Weapons Convention on November 3, 1997, Khatami’s government has yet to fulfill its obligations to declare production facilities and chemical weapons stockpiles.57 However, given Tehran’s continued attempts to import technology necessary to manufacture nerve agents, as well as its continued weaponization of chemical agents into shells and warheads, it is clear that Iran seeks neither to comply with the letter nor spirit of its international obligations.

Iranian Biological Weapons [BW]: An overview

Tehran also flaunts the Biological and Toxin Weapons Convention, to which it is a signatory. Discussing biological weapons capabilities at a press briefing last month, Lisa Bronson, deputy undersecretary of defense, commented, "They have it, and we can't turn a blind eye to the fact that they have it."58
As with its chemical weapons program, Iran actively initiated its biological weapons program during the Iran-Iraq War. In 1989, both the CIA and Britain's MI6 reported that Iranian officials had sought to buy from firms in Canada and the Netherlands strains of two fungi necessary to manufacture lethal toxins. Progress on Iran's program accelerated significantly with the arrival of Russian advisors in 1993. One intelligence source commented, "The Russian help has given Iran a quantum leap forward. They have saved years of experiments"

Russia remains the primary supplier of biological weapons technology. Testifying before Congress in October 2000, Lauder reported that Iran's biological weapons program "is in the late stages of research and development, but we believe Iran already holds some stocks of BW agents and weapons. Tehran probably has investigated both toxins and live organisms as BW agents, and for BW dissemination could use many of the same delivery systems - such as artillery and aerial bombs - that it has in its CW inventory."

Development is made much easier because of the dual use nature of many of the components necessary for a biological weapons program. Indeed, Swiss, German, Italian, and Spanish companies have all provided Iran with components since incorporated into its biological weapons program.

As with the nuclear and chemical weapons industries, the IRGC largely directs Iran's biological weapons program. Biological weapons research and production is scattered among a number of sites, many of which are at university laboratories. The Imam Reza Medical Center at Mashhad University and the Iranian Research Organization for Science and Technology both reportedly engage in biological weapons research and development. Damghan reportedly is a major production facility. Unverified reports suggest that the Iranian government stockpiles both anthrax and botulinum near Tabriz.

Other sites may exist in Tehran. In July 1996, I walked past the Pasteur Institute in south-central Tehran; security officers apparently affiliated with either the IRGC or the Ministry of Information heavily patrolled the perimeter. When I later inquired about the heavy presence from friends, several local residents reported that while the Pasteur Institute conducts legitimate medical research, it also engages in biological weapons research. Such statements may, however, simply reflect widespread cynicism toward the ayatollahs.

Delivering the Goods: Iran's Missile Program

Nuclear, chemical, and biological weapons are tactically meaningless unless the state provides the means to deliver their lethal payloads. Tehran has an active ballistic missile program that, within a decade, may give the Islamic Republic the ability to hit anywhere in Europe or Asia, if not the United States.

Iran learned the importance of indigenous missile production during the Iran-Iraq War. Between 1985 and 1988, Iran and Iraq regularly traded missile salvos. North Korea, Tehran's main missile supplier, at times simply could not replenish Iran's supplies fast enough. Tehran also observed the importance of missiles in modern warfare when, in 1991, the US-led coalition relied heavily upon missile strikes in the early stages of the war against Iraq.

North Korean technology remains the backbone of Iran's missile program. In March 2001, Eisenstadt estimated that Iran already had manufactured the following:

- 300 Shihab-1 missiles with a range of 320 kilometers
- 100 Shihab-2 missiles with a range of 500 kilometers
- A "handful" of Shihab-3 missiles with a range of 1,300 kilometers.
- 200 Chinese CSS-8 missiles with a range of 150 kilometers.
Initially the Shihab-3 missile was plagued by test failures. Nevertheless, in a September 1998, military parade, the Iranian government exhibited the missile, with banners attached to the launcher reading, "The US can do nothing" and "Israel will be wiped from the map."69 By March 2000, though, the Shihab-3 was ready for deployment.70

While the Shihab-3 provides Iran with regional reach (though perhaps not with a high degree of accuracy), the Iranian government, backed by Russian expertise, continues to push forward its missile program.71 The Islamic Republic is now developing a Shihab-4 missile with a reported range of 2,000 kilometers, while a Shihab-5 missile, still in the early development stages, is being designed to reach targets up to 10,000 kilometers away. The Federation of American Scientists also reports planning for a satellite-launched Shihab-6 intercontinental ballistic missile.72

Boosting capabilities: The role of proliferation

While local industry can indigenously produce the Shihab-1 and Shihab-2 missiles, Iran remains dependent upon Russian and North Korean technology transfers for the Shihab-3 and Shihab-4 missiles. In July 1998, the US sanctioned seven Russian entities and the following January sanctioned an additional Russian firm assisting Iran's missile program.73 However, Russia may have given Iran's ballistic missile program a significant boost in a 2001 arms deal in which the Russian arms firm Rosoboroneksport agreed to provide Iran a number of surface-to-air missiles, allegedly to defend the Bushehr nuclear reactor against enemy airstrikes. Study and dissection of the Russian missile components, though, would advance Iran's indigenous design ability.74 China also shipped Iran HQ-7 short-range missiles in January 2002, which China had itself reverse-engineered from a French design. In 1998, after selling Iran C-801 and C-802 anti-ship cruise missiles, China promised to stop missile sales to Iran, though intelligence agencies have yet to comment publicly about whether China has honored its pledge.75

Proliferation is not unidirectional. On February 25, 2002, Al-Sharq Al-Awsat reported that Iran had contracted with Libya to build a missile plant capable of manufacturing surface-to-surface missiles with a range of 1,500 km.76 Further indicating the danger of providing any weapons technology to the Islamic Republic, the Berlin daily Die Welt reported on February 28, 2002, that Iranian experts under the command of IRGC Brigadier-General Ali Reza Tamizi were drilling Palestinian commandos in the use of surface-to-air missiles.77 Tamizi reportedly is conducting his training in the Jenata military camp in the Syrian-controlled Beqaa Valley of Lebanon.

In his October 2000 testimony before Congress, Lauder reported that Tehran "intends to develop even longer range ballistic missiles in the near future." Lauder also suggested that Iranian plans to develop a space-launch vehicle, nominally to deliver to orbit Iranian satellites, could easily be diverted into a ballistic missile with the simple addition of a reentry vehicle.78 Tenet went further in his February 2002 testimony before the Senate Select Intelligence Committee when he argued that the United States would likely face a threat from Iranian intercontinental ballistic missiles during the next decade.79

Is Khatami Buying Time while Iran Buys Weapons?

In 1997, prominent newspapers like The Washington Post and The New York Times bestowed the label 'reformer' upon the newly-elected president Khatami. Before Khatami did anything to prove himself, experts like former National Security Council staff member Gary Sick declared the president-elect "a reformer with an outspoken commitment to civil society, social justice, the rule of law and expanded freedom."80 Nearly five years after his first election, Khatami has enacted few if any tangible reforms. Indeed, while many younger Iranians do enjoy some additional flexibility in dress, freedoms have actually declined under the Khatami administration.

Khatami has accomplished one important task, though. With a gentle face, soft rhetoric, and numerous trips abroad, Khatami has succeeded in softening the image of the Islamic Republic. No longer is Iran associated with waves of 14-year-olds running across minefields, nor do many Western academics and commentators dwell on Iran's export of terror, so long as Tehran keeps its assassination squads away from Europe. However, the fundamentals of the
regime’ behavior have not changed. Indeed, under Khatami, Iran has accelerated not only its drive for a nuclear capability, but also actively increased its pursuit of chemical and biological weapons, as well as long-range ballistic missiles.

Iranian officials often point out that the IAEA will regularly inspect Bushehr’s nuclear reactor. However, Iran’s track record makes such inspections insufficient. After all, Iran is a signatory to both the Chemical Weapons Treaty and the Biological and Toxin Weapons Convention, but continues to contravene the treaties’ obligations. If Tehran is willing to cheat on its commitments to not produce chemical and biological weapons, then it is just as likely to obstruct or avoid its commitments to the IAEA.

The Islamic Republic could not have achieved so much so quickly in its pursuit of weapons of mass destruction if it were not for the assistance provided by outside entities - most significantly in Russia, China, and North Korea, but also in Western Europe. Indeed, while the United States has sanctioned Russian and Chinese firms for their assistance to Iran, Washington has turned a blind eye toward Europe's critical role in providing dual use technology to Iran. The European Union has since 1992 pursued a policy of "critical engagement" with Iran, based upon the logic that dialogue better encourages internal Iranian reform than does confrontation, and also that business relations between Europe and Iran will make Iran less likely to engage on adventurous policies that could threaten those financial ties. Unfortunately, it is likely no coincidence that the acceleration of Iran’s weapons of mass destruction program coincided both with Europe's engagement policy and Khatami’s call for a "Dialogue of Civilizations." While the words out of Tehran are soft, recent developments in Iran’s unconventional weapons programs indicate that the Islamic Republic’s ambitions have not followed suit.

Michael Rubin is an adjunct scholar at The Washington Institute for Near East Policy, currently resident at Hebrew University’s Leonard Davis Institute.

Notes

© 2002 Middle East Intelligence Bulletin. All rights reserved.

Middle East Intelligence Bulletin

View/Print Page as PDF

Share

Email Alerts

Sign Up

Recommended

Brief Analysis

Is the Muqawama Signaling De-Escalation?

Jul 9, 2021

Hamdi Malik, Crispin Smith
Polarization and the Elusive Quest for Prosperity in the Arab World

Jul 9, 2021

Kathya K. Berrada, Nouh El Harmouzi

The Battle of Marib: the Challenge of Ending a Stalemate War

Jul 9, 2021

TOPICS

Proliferation

REGIONS & COUNTRIES

Iran

STAY UP TO DATE

SIGN UP FOR EMAIL ALERTS
The Washington Institute seeks to advance a balanced and realistic understanding of American interests in the Middle East and to promote the policies that secure them.

The Institute is a 501(c)3 organization; all donations are tax-deductible.